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Introduction 

Sn deposition on EUV collector optics cripples reflectivity with 
just a couple nanometers of deposition. 

Thermal evaporation is not a solution, high energy ion 
sputtering is not a solution.  Other methods required. 

 High temperature would result in multilayer diffusion. 

 Sputter will remove multilayers as well as the Sn. 

One possible solution is the use of hydrogen plasma to create 
volatile SnH4 to remove Sn from the surface of the collector. 

The effects of pressure, flow rate, surface size on Sn removal 
rates are examined. 
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Flux Incident on Collector Optics 

Sn comes from the condensable fuel used in creating EUV 
light. 
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Sn growth depends on adatom-surface interaction. 

Sn-Si and Sn-Ru growth exhibits Stranski-Krastanov growth: 
1-2 ML of coverage with addition island growth. 

Sn Film Growth 
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Deposition of Sn from EUV Plasma 

Energetic sputtering of deposited Sn by non-mitigated EUV 
plasma species is insufficient below 400 eV. 
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Hydrogen Plasma Vs. Atomic Hydrogen Source 

~10x Higher Sn removal rates with H2 

plasma source versus atomic H* source 
in same tool configuration 

 Increased uniformity 

Plasma is a uniform radical source across 
the Sn removal plane 

 Located above Sn contamination 

 Radicals readily created within proximal 
distance of Sn contamination. 

 

Atomic hydrogen sources are point 
sources 

 1/r2 flux drop off 

 Relies on long distance diffusion 
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How Hydrogen Plasma Cleans 

H+ ions are accelerated through the sheath and H* radicals 
diffuse toward the surface. 
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Surface adsorption and diffusion occurs until SnH4 is formed.  Volatile SnH4 either gets pumped out, or ... ... the fragile SnH4 decomposes on a surface (wall or substrate). 
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Concerns 
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SnH4 can deposit Sn on chamber surfaces. This Sn can be redeposited on the collector. 
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Experimental Setup 

Large stainless steel plate (16 cm wide) attached to a 13.56 
MHz, 500 W max RF-generator.  Samples etched 20 min. 

Pressures explored at 100 sccm for 80, 300, 500, 1000 mTorr 
using a gate valve to adjust pump rate. 

Flow rates of 50, 100, 500, 950 sccm explored at 80 mTorr. 

Masked, Sn coated Si witness plates located at three different 
locations from the center of the RF-antenna plate: 5 cm, 9 
cm,13 cm 
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Experimental Setup 
RF-antenna installed in CPMI’s 

XTS 13-35 source chamber to 
allow pressure/flow rate 
manipulation with adequate 
chamber size. 

Langmuir triple probes are utilized 
to measure plasma parameters at 
positions 1-3.  

Electron-beam evaporation utilized 
to coat Sn samples up to 300 nm. 
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Small sample etches ~ 7x faster than larger sample 

Unable to etch large sample at same conditions.  Why? 
Redeposition 

Higher flow rates required to remove SnH4 from sample.  

Effect of Sample Size 
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Etch rate maximized at lowest pressure. 

More likely to redeposit at higher pressures. 

Sample location 2 (furthest from open space) has lowest 
average Sn removal rate observed. 

Etch Rate Vs. Pressure (100 sccm) 
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Etch Rate Vs Flow Rate 

Less than 500 sccm, too little flow rate.  Above 500 sccm too 
few radicals. 

950 sccm flow rate minimizes cross-antenna variation at a 
cost in removal rate. 
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 Increasing chamber pressure results in increasing electron 
temperature. 

Temperatures appear high and might be the result of beams, 
which are not perceivable with triple probes.  

Electron density appears independent of pressure. 

Plasma Parameters Vs. Pressure (100 sccm) 
 19 

Electron Temperature Electron Density 



2012 International Symposium on Extreme Ultraviolet Light Lithography 

Brussels, Belgium 

October 2012 

Plasma Parameters Vs. Flow Rate (80 mTorr) 

Electron temperature appears independent of chamber flow 
rate. 

Electron density is relatively uniform except at 950 sccm 
where it increases by nearly a factor of 2. 
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 Increased radical production at higher pressure 

 Should increase etch rate, but removal rate doesn’t agree. 

 Increased pressure, increases SnH4 decomposition. 

Recap 
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Recap 

SnH4 removal increases with increasing flow rate 

H* not largely removed until very high flow rates 
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Best scenario for cleaning is low pressure and the appropriate flow rate. 
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Conclusions 

 It is possible to remove Sn from a collector optic using an in-
situ H2 plasma cleaning system. 

The decomposition of unstable SnH4 makes removing Sn 
from large surfaces difficult but not impossible. Sn removal 
rate ≠ Sn etch rate. 

Higher flow rates are required to remove SnH4 from larger 
samples before it decomposes. 

Under presented experimental conditions, optimal Sn removal 
from large surfaces occurred at 500 sccm, 100 mTorr, 500 W 
RF power. Net removal rates as high as 7.5 ± 0.5 nm/min. 

Net Sn removal rate less affected by variations in 
pressure/plasma conditions than by flow rate. 
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Thank You For Your Attention! 
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Sample Size Etch Difference 
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t = 0 t = 3 min t = 6 min

1 cm2 Sample Size: Magnetron 

Etched SideDeposited SideBare Si 

125 mm Sample Size: Magnetron 
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